Soal dan Pembahasan Barisan Aritmatika

langsung saja kita simak bersama pembahasannya di bawah ini:


Contoh Soal 1:
Diketahui barisan bilangan -1, 4, 9, 14, 19, 24…. Dst
Tentukan rumus suku ke-n dari barisan bilangan tsb!

Penyelasaiannya:
Dik : a = -1 , b = 9-4 = 5
Dit  : Un = a + (n-1) b
 Un   = -1 + (n-1) 5
      Un  = -1 + 5n -5
      Un  = 5n – 6
Jadi , rumus suku ke-n barisan bilangan tsb adalah Un  = 5n – 6

Contoh Soal 2:
Diketahui barisan bilangan 4, 1, -2, -5, -8…… dst
Tentukan suku ke 20 dari barisan bilangan tsb !

Penyelasaiannya:
Dik : a = 4, b = 1-4 = -3
Dit : Un = a + (n-1) b
      U20= 4 + (20-1) (-3)
      U20= 4 + (19) (-3)
      U20= 4 -57
      U20=-53
Jadi, suku ke 20 dari barisan bilangan itu adalah -53

Contoh Soal 3:
Diketahui rumus suku ke n suatu barisan aritmatika adalah Un = 2n + 5. Tentukanlah suku ke 15 dari barisan itu !

Penyelasaiannya:

Dik : Un = 2n + 5.
Dit : U15
Jawab : U15 = 2(15) + 5
            U15 = 30 + 5
            U15 = 35
Jadi suku ke 15 dari barisan bilangan tersebut adalah 35.

Contoh Soal 4:
Suatu barisan aritmatika suku pertamanya adalah -5 dan suku ke 6 nya adalah --3. Tentukan beda dari barisan aritmatika itu!

Penyelasaiannya:
Dik : U1 = a = -5 dan U6 = -35
Dit : b

Jawab  : 
Un = a + (n-1) b
  U6 = -5 +(6-1) b
-35 = -5 + 5b
        -35 + 5= 5b
       -30 = 5b
          b = -6
Jadi, beda dari barisan itu adalah -6

Contoh Soal 5:
Diketahui suku kedua barisan aritmatika adalah -6 dan suku ke 5 adalah 9. Tentukan suku ke 12nya!

Penyelasaiannya:
Dik : U2 = -6 dan U5 = 9
Dit : U12

Jawab :
U2 = -6
a + b = -6
a = -6 – b …………(1)
U5 = 9
a + 4b = 9…………(2)
substitusi (1) ke (2)
(-6 – b ) + 4b = 9
- 6 + 3b = 9
3b = 9 +6
b = 5
substitusi b = 5, ke (1)
a = -6 -5 = -11
maka  -> U12 = a + 11b
             U12 = -11 + 11(5)
             U12 = -11  + 55
             U12 = 44
Jadi suku ke12 dari barisan bilangan itu adalah 44.

Populer